Solid State Physics-1 second edition by Philip Hofmann complete book |
COURSE CONTENTS:
1 Crystal Binding and
Structure.......................................... 1
1.1 Classification of Solids by Binding
Forces (B) ............................. 2
1.1.1 Molecular Crystals and the van der
Waals Forces (B).... 2
1.1.2 Ionic Crystals and BornāMayer Theory
(B) ................... 6
1.1.3 Metals and WignerāSeitz Theory (B)
............................. 9
1.1.4 Valence Crystals and HeitlerāLondon
Theory (B) ......... 11
1.1.5 Comment on Hydrogen-Bonded Crystals
(B)................. 12
1.2 Group Theory and Crystallography
............................................... 13
1.2.1 Definition and Simple Properties of
Groups (AB).......... 14
1.2.2 Examples of Solid-State Symmetry
Properties (B)......... 17
1.2.3 Theorem: No Five-fold Symmetry (B)
........................... 20
1.2.4 Some Crystal Structure Terms
and Nonderived Facts (B)
............................................... 22
1.2.5 List of Crystal Systems and Bravais
Lattices (B) ........... 23
1.2.6 Schoenflies and International
Notation
for Point Groups (A)
....................................................... 26
1.2.7 Some Typical Crystal Structures (B)
.............................. 28
1.2.8 Miller Indices
(B)............................................................ 31
1.2.9 Bragg and von Laue Diffraction (AB)
............................ 31
Problems
..................................................................................................
38
2 Lattice Vibrations and Thermal
Properties..................... 41
2.1 The BornāOppenheimer Approximation (A)
................................ 42
2.2 One-Dimensional Lattices
(B)....................................................... 47
2.2.1 Classical Two-Atom Lattice with
Periodic Boundary
Conditions
(B)................................................................. 48
2.2.2 Classical, Large, Perfect Monatomic
Lattice,
and Introduction to Brillouin Zones
(B).......................... 51
2.2.3 Specific Heat of Linear Lattice (B).................................
61
2.2.4 Classical Diatomic Lattices: Optic
and Acoustic
Modes (B)
....................................................................... 64
2.2.5 Classical Lattice with Defects (B)
.................................. 70
2.2.6 Quantum-Mechanical Linear Lattice (B)
........................ 76
2.3 Three-Dimensional Lattices
.......................................................... 85
2.3.1 Direct and Reciprocal Lattices and
Pertinent
Relations (B)...................................................................
85
2.3.2 Quantum-Mechanical Treatment and
Classical
Calculation of the Dispersion Relation
(B)..................... 87
2.3.3 The Debye Theory of Specific Heat
(B)......................... 92
2.3.4 Anharmonic Terms in The Potential /
The Gruneisen Parameter
(A)......................................... 99
2.3.5 Wave Propagation in an Elastic
Crystalline Continuum (MET, MS)
................................ 103
Problems..................................................................................................
108
3 Electrons in Periodic Potentials
......................................... 113
3.1 Reduction to One-Electron Problem
............................................. 114
3.1.1 The Variational Principle (B)
......................................... 114
3.1.2 The Hartree Approximation (B)
..................................... 115
3.1.3 The HartreeāFock Approximation (A)
........................... 119
3.1.4 Coulomb Correlations and the
Many-Electron
Problem (A)
.................................................................... 135
3.1.5 Density Functional Approximation
(A).......................... 137
3.2 One-Electron Models
.................................................................... 148
3.2.1 The KronigāPenney Model (B)
...................................... 148
3.2.2 The Free-Electron or
Quasifree-Electron
Approximation (B)
......................................................... 158
3.2.3 The Problem of One-Electron in a Three-Dimensional
Periodic
Potential............................................................ 173
3.2.4 Effect of Lattice Defects on
Electronic States
in Crystals (A)
................................................................ 205
Problems..................................................................................................
209
4 The Interaction of Electrons and
Lattice Vibrations....... 213
4.1 Particles and Interactions of
Solid-state Physics (B)..................... 213
4.2 The PhononāPhonon Interaction
(B)............................................. 219
4.2.1 Anharmonic Terms in the Hamiltonian
(B).................... 219
4.2.2 Normal and Umklapp Processes
(B)............................... 220
4.2.3 Comment on Thermal Conductivity (B).........................
223
4.2.4 Phononics
(EE)............................................................... 225
4.3 The Electron-Phonon
Interaction.................................................. 225
4.3.1 Form of the Hamiltonian (B)
.......................................... 226
4.3.2 Rigid-Ion Approximation (B)
......................................... 229
4.3.3 The Polaron as a Prototype
Quasiparticle (A) ................ 232
4.4 Brief Comments on ElectronāElectron
Interactions (B)................ 242
4.5 The Boltzmann Equation and Electrical
Conductivity .................. 244
4.5.1 Derivation of the Boltzmann
Differential
Equation
(B).................................................................... 244
4.5.2 Motivation for Solving the Boltzmann
Differential
Equation
(B).................................................................... 246
4.5.3 Scattering Processes and Q Details
(B)........................... 247
4.5.4 The Relaxation-Time Approximate
Solution
of the Boltzmann Equation for Metals
(B)...................... 251
4.6 Transport Coefficients
................................................................... 254
4.6.1 The Electrical Conductivity
(B)...................................... 254
4.6.2 The Peltier Coefficient (B)..............................................
254
4.6.3 The Thermal Conductivity
(B)........................................ 255
4.6.4 The Thermoelectric Power (B)
....................................... 255
4.6.5 Kelvinās Theorem (B)
..................................................... 256
4.6.6 Transport and Material Properties in
Composites
(MET, MS)
...................................................................... 257
Problems
..................................................................................................
263
5 Metals, Alloys, and the Fermi
Surface ............................. 267
5.1 Fermi Surface (B)
.......................................................................... 267
5.1.1 Empty Lattice (B)
........................................................... 268
5.1.2 Exercises
(B)................................................................... 269
5.2 The Fermi Surface in Real Metals
(B)........................................... 273
5.2.1 The Alkali Metals (B) .....................................................
273
5.2.2 Hydrogen Metal
(B)........................................................ 273
5.2.3 The Alkaline Earth Metals
(B)........................................ 273
5.2.4 The Noble Metals (B) .....................................................
273
5.3 Experiments Related to the Fermi
Surface (B) .............................. 275
5.4 The de Haasāvan Alphen effect (B)
.............................................. 276
5.5 Eutectics (MS, ME) .......................................................................
280
5.6 Peiperlās Instability of Linear Metals
(B) ......................................... 281
5.6.1 Relation to Charge Density Waves
(A)........................... 284
5.6.2 Spin Density Waves (A)
................................................. 285
5.7 Heavy Fermion Systems (A)
......................................................... 285
5.8 Electromigration (EE, MS)
............................................................ 286
5.9 White Dwarfs and Chandrasekharās Limit
(A).............................. 288
5.9.1 Gravitational Self-Energy
(A)......................................... 289
5.9.2 Idealized Model of a White Dwarf (A)
........................... 289
5.10 Some Famous Metals and Alloys (B, MET)
.................................. 292
Problems
..................................................................................................
293
6 Semiconductors ...................................................................
295
6.1 Electron Motion
............................................................................
298
6.1.1 Calculation of Electron and Hole
Concentration (B)...... 298
6.1.2 Equation of Motion of Electrons in
Energy Bands (B)... 304
6.1.3 Concept of Hole Conduction
(B).................................... 307
6.1.4 Conductivity and Mobility in
Semiconductors (B)......... 309
6.1.5 Drift of Carriers in Electric and
Magnetic Fields:
The Hall Effect (B)
......................................................... 311
6.1.6 Cyclotron Resonance (A)
............................................... 313
6.2 Examples of Semiconductors
........................................................ 320
6.2.1 Models of Band Structure for Si, Ge
and II-VI
and III-V Materials
(A)................................................... 320
6.2.2 Comments about GaN
(A).............................................. 326
6.3 Semiconductor Device Physics
..................................................... 327
6.3.1 Crystal Growth of Semiconductors (EE,
MET, MS) ...... 327
6.3.2 Gunn Effect
(EE)............................................................ 328
6.3.3 pn-Junctions (EE) ...........................................................
330
6.3.4 Depletion Width, Varactors,
and Graded Junctions
(EE)............................................. 333
6.3.5 Metal Semiconductor Junctions ā
the Schottky Barrier (EE)
............................................... 336
6.3.6 Semiconductor Surface States and
Passivation (EE) ...... 337
6.3.7 Surfaces Under Bias Voltage (EE)
................................. 339
6.3.8 Inhomogeneous Semiconductors
Not in Equilibrium (EE)
................................................. 340
6.3.9 Solar Cells
(EE).............................................................. 346
6.3.10 Transistors
(EE).............................................................. 352
6.3.11 Charge-Coupled Devices (CCD) (EE)............................
353
Problems..................................................................................................
353
7 Magnetism, Magnons, and Magnetic
Resonance .............. 355
7.1 Types of
Magnetism......................................................................
356
7.1.1 Diamagnetism of the Core Electrons
(B)........................ 356
7.1.2 Paramagnetism of Valence Electrons
(B)....................... 357
7.1.3 Ordered Magnetic Systems (B)
...................................... 360
7.2 Origin and Consequences of Magnetic
Order ............................... 373
7.2.1 Heisenberg Hamiltonian
................................................. 373
7.2.2 Magnetic Anisotropy and Magnetostatic
Interactions (A)...............................................................
385
7.2.3 Spin Waves and Magnons (B)
........................................ 390
7.2.4 Band Ferromagnetism (B)
.............................................. 407
7.2.5 Magnetic Phase Transitions (A) .....................................
416
7.3 Magnetic Domains and Magnetic Materials
(B)............................ 422
7.3.1 Origin of Domains and General
Comments (B).............. 422
7.3.2 Magnetic Materials (EE, MS)
......................................... 432
7.3.3 Nanomagnetism (EE, MS)
.............................................. 434
7.4 Magnetic Resonance and Crystal Field
Theory............................. 435
7.4.1 Simple Ideas About Magnetic Resonance
(B) ................ 435
7.4.2 A Classical Picture of Resonance (B)
............................. 436
7.4.3 The Bloch Equations and Magnetic
Resonance (B)........ 439
7.4.4 Crystal Field Theory and Related
Topics (B) ................. 445
7.5 Brief Mention of Other Topics
...................................................... 453
7.5.1 Spintronics or Magneto electronics
(EE) ......................... 453
7.5.2 The Kondo Effect (A)
..................................................... 457
7.5.3 Spin Glass
(A)................................................................. 458
7.5.4 Solitons (A, EE)
.............................................................. 460
Problems ..................................................................................................
461
8
Superconductivity...............................................................
463
8.1 Introduction and Some Experiments (B)
....................................... 463
8.1.1 Ultrasonic Attenuation
(B).............................................. 467
8.1.2 Electron Tunneling (B)
................................................... 467
8.1.3 Infrared Absorption (B)
.................................................. 467
8.1.4 Flux Quantization (B)
..................................................... 467
8.1.5 Nuclear Spin Relaxation (B)
........................................... 468
8.1.6 Thermal Conductivity
(B)............................................... 468
8.2 The London and GinzburgāLandau
Equations (B)........................ 469
8.2.1 The Coherence Length
(B).............................................. 471
8.2.2 Flux Quantization and Fluxoid
(B)................................ 475
8.2.3 Order of Magnitude for Coherence
Length (B) .............. 476
8.3 Tunneling (B, EE)
......................................................................... 478
8.3.1 Single-Particle or Giaever
Tunneling.............................. 478
8.3.2 Josephson Junction Tunneling
........................................ 479
8.4 SQUID: Superconducting Quantum
Interference (EE) ................. 483
8.4.1 Questions and Answers (B)
............................................ 485
8.5 The Theory of Superconductivity (A) ..........................................
486
8.5.1 Assumed Second Quantized Hamiltonian
for Electrons and Phonons in Interaction
(A).................. 486
8.5.2 Elimination of Phonon Variables and
Separation
of ElectronāElectron Attraction Term Due
to Virtual Exchange of Phonons
(A)............................... 490
8.5.3 Cooper Pairs and the BCS Hamiltonian
(A) ................... 494
8.5.4 Remarks on the Nambu Formalism and
Strong
Coupling Superconductivity
(A)..................................... 504
8.6 Magnesium Diboride (EE, MS, MET)
.......................................... 505
8.7 Heavy-Electron Superconductors (EE, MS,
MET) ....................... 506
8.8 High-Temperature Superconductors (EE,
MS, MET) ................... 506
8.9 Summary Comments on Superconductivity
(B)............................ 509
Problems..................................................................................................
512
9 Dielectrics and
Ferroelectrics............................................. 513
9.1 The Four Types of Dielectric Behavior
(B) .................................. 513
9.2 Electronic Polarization and the
Dielectric Constant (B) ............... 514
9.3 Ferroelectric Crystals (B)
.............................................................. 520
9.3.1 Thermodynamics of Ferroelectricity
by Landau Theory (B)
.................................................... 521
9.3.2 Further Comment on the Ferroelectric
Transition
(B, ME)
........................................................................... 524
9.3.3 One-Dimensional Model of the Soft
Mode
of Ferroelectric Transitions (A)
...................................... 525
9.4 Dielectric Screening and Plasma
Oscillations (B)......................... 529
9.4.1 Helicons (EE) .................................................................
531
9.4.2 AlfvƩn Waves
(EE)......................................................... 533
9.4.3 Plasmonics (EE)
............................................................. 534
9.5 Free-Electron Screening................................................................
534
9.5.1 Introduction (B)
.............................................................. 534
9.5.2 The ThomasāFermi, and DebyeāHuckel
Methods
(A, EE)
............................................................................
535
9.5.3 The Lind hard Theory of Screening (A)
.......................... 538
Problems..................................................................................................
543
10 Optical Properties of Solids................................................
545
10.1 Introduction
(B).............................................................................
545
10.2 Macroscopic Properties
(B)........................................................... 546
10.2.1 KronigāKramerās Relations
(A)....................................... 550
10.3 Absorption of Electromagnetic
RadiationāGeneral (B) ................. 552
10.4 Direct and Indirect Absorption
Coefficients (B) ........................... 553
10.5 Oscillator Strengths and Sum Rules (A)
....................................... 560
10.6 Critical Points and Joint Density of
States (A).............................. 561
10.7 Exciton Absorption
(A)................................................................. 562
10.8 Imperfections (B, MS, MET)
........................................................ 563
10.9 Optical Properties of Metals (B, EE,
MS) ..................................... 565
10.10 Lattice Absorption, Restrahlen, and
Polaritons (B)....................... 571
10.10.1 General Results (A)
........................................................ 571
10.10.2 Summary of the Properties of Īµ(q, Ļ)
(B)....................... 578
10.10.3 Summary of Absorption Processes:
General Equations (B)
.................................................... 579
10.11 Optical Emission, Optical Scattering
and Photoemission (B) ....... 580
10.11.1 Emission (B)
................................................................... 580
10.11.2 Einstein A and B Coefficients (B, EE,
MS) .................... 581
10.11.3 Raman and Brillouin Scattering (B,
MS) ........................ 582
10.11.4 Optical Lattices (A, B)
.................................................... 584
10.11.5 Photonics (EE)
................................................................ 584
10.11.6 Negative Index of Refraction (EE)
................................. 585
10.12 Magneto-Optic Effects: The Faraday
Effect (B, EE, MS) ............. 587
Problems
..................................................................................................
589
11 Defects in Solids
.................................................................. 591
11.1 Summary About Important Defects
(B)......................................... 591
11.2 Shallow and Deep Impurity Levels in
Semiconductors (EE) ........ 594
11.3 Effective Mass Theory, Shallow
Defects, and Superlattices (A)... 595
11.3.1 Envelope Functions (A)
.................................................. 595
11.3.2 First Approximation (A)
................................................. 596
11.3.3 Second Approximation
(A)............................................. 597
11.4 Color Centers (B) ..........................................................................
600
11.5 Diffusion (MET, MS)
.................................................................... 602
11.6 Edge and Screw Dislocation (MET, MS)
...................................... 603
11.7 Thermionic Emission (B)
.............................................................. 605
11.8 Cold-Field Emission
(B)................................................................ 608
11.9 Microgravity
(MS).........................................................................
610
Problems
..................................................................................................
611
12 Current Topics in Solid
CondensedāMatter Physics ...... 613
12.1 Surface Reconstruction (MET, MS) ..............................................
614
12.2 Some Surface Characterization
Techniques (MET, MS, EE) ........ 615
12.3 Molecular Beam Epitaxy (MET, MS)
........................................... 617
12.4 Heterostructures and Quantum
Wells............................................ 618
12.5 Quantum Structures and Single-Electron
Devices (EE) ................ 619
12.5.1 Coulomb Blockade (EE)
................................................. 620
12.5.2 Tunneling and the Lindauer Equation
(EE).................... 623
12.6 Superlattices, Bloch Oscillators,
StarkāWannier Ladders ............. 626
12.6.1 Applications of Superlattices and
Related
Nanostructures
(EE)........................................................ 629
12.7 Classical and Quantum Hall Effect (A)
......................................... 631
12.7.1 Classical Hall Effect ā CHE (A)
..................................... 631
12.7.2 The Quantum Mechanics of Electrons
in a Magnetic Field: The Landau Gauge (A)
................. 634
12.7.3 Quantum Hall Effect: General
Comments (A)................ 636
12.8 Carbon ā Nanotubes and Fullerene
Nanotechnology (EE)............ 640
12.9 Amorphous Semiconductors and the
Mobility Edge (EE) ............ 642
12.9.1 Hopping Conductivity
(EE)............................................ 642
12.10 Amorphous Magnets (MET, MS)
................................................. 644
12.11 Soft Condensed Matter (MET, MS)
.............................................. 644
12.11.1 General Comments .........................................................
644
12.11.2 Liquid Crystals (MET, MS)
............................................ 645
12.11.3 Polymers and Rubbers (MET, MS)
................................ 645
Problems..................................................................................................
648
Appendices
...................................................................................
651
A
Units..............................................................................................
651
B Normal Coordinates
...................................................................... 653
C Derivations of Blochās
Theorem................................................... 657
C.1 Simple One-Dimensional Derivationā ............................ 657
C.2 Simple Derivation in Three Dimensions
........................ 660
C.3 Derivation of Blochās Theorem by Group
Theory ......... 661
D Density Matrices and
Thermodynamics........................................ 662
E Time-Dependent Perturbation
Theory........................................... 663
F Derivation of The Spin-Orbit Term from
Diracās Equation............ 664
G The Second Quantization Notation for
Fermions and Bosons ...... 666
G.1 Bose Particles .................................................................
666
G.2 Fermi
Particles................................................................ 668
H The Many-Body
Problem.............................................................. 669
H.1 Propagators.....................................................................
670
H.2 Green
Functions.............................................................. 671
H.3 Feynman
Diagrams......................................................... 671
H.4 Definitions ......................................................................
671
H.5 Diagrams and the Hartree and
HartreeāFock
Approximations
.............................................................. 672
H.6 The Dyson Equation
....................................................... 675
I Brief Summary of Solid-State
Physics.......................................... 676
J Folk Theorems
..............................................................................
690
K Handy Mathematical Results
........................................................ 694
L Condensed Matter Nobel Prize Winners
(in Physics or Chemistry)
.............................................................. 696
M Problem Solutions .........................................................................
700
M.1 Chapter 1 Solutions
........................................................ 700
M.2 Chapter 2 Solutions
........................................................ 708
M.3 Chapter 3 Solutions
........................................................ 727
M.4 Chapter 4 Solutions
........................................................ 733
M.5 Chapter 5 Solutions
........................................................ 739
M.6 Chapter 6 Solutions
........................................................ 744
M.7 Chapter 7 Solutions
........................................................ 750
Crystal Binding and Structure:
It has been argued that solid-state physics was born, as a separate field, with the publication, in 1940, of Fredrick Seitzās book, Modern Theory of Solids [82]. In that book parts of many fields such as metallurgy, crystallography, magnetism, and electronic conduction in solids were in a sense coalesced into the new field of solid-state physics. About twenty years later, the term condensed-matter physics, which included the solid-state but also discussed liquids and related topics, gained prominently usage (see, e.g., Chaykin and Lubensky [26]). In this book, we will focus on the traditional topics of solid-state physics, but particularly in the last chapter.
Elements form solids because, for some range of temperature and
pressure, a solid has less free energy than other states of matter. It is
generally supposed that at low enough temperature and with suitable external
pressure (helium requires external pressure to solidify) everything becomes solid. No one has ever proved that this must happen. We cannot, in general,
prove from first principles that the crystalline state is the lowest
free-energy state.
Crystal Structure Determination
After having described different crystal structures, the question is of course how to determine these structures in the first place. By far, the most important technique for doing this is X-ray diffraction. In fact, the importance of this technology goes far beyond solid-state physics, as it has become an essential tool for fields such as structural biology as well. There the idea is that, if you want to know the structure of a given protein, you can try to crystallize it and use the powerful methodology for structural determination by-ray diffraction. We will also use X-ray diffraction as a motivation to extend our formal description of structures a bit.
X-Ray Diffraction
X-rays interact rather weakly with matter. A description of X-ray diffraction can, therefore, be restricted to single scattering, that is, incoming X-rays get scattered not more than once (most are not scattered at all). This is called the kinematic approximation; it greatly simplifies matters and is used throughout the treatment here. In addition to this, we will assume that the X-ray source and detector are very far away from the sample so that the incoming and outgoing waves can be treated as plane waves. X-ray diffraction of crystals was discovered and described by M. von Laue in 1912. Also, in 1912, W. L. Bragg came up with an alternative description that is considerably simpler and serves as a starting point here.
Bragg Theory
Bragg treated the problem as the reflection of the incoming X-rays at a flat crystal plane. These planes could, for example, be the close-packed planes making up the fcc and hcp crystals or they could be alternating Cs and Cl planes making up the CsCl structure. At first glance, this has very little physical justification because the crystal planes are certainly not āflatā for X-rays that have a wavelength similar to the atomic spacing. Nevertheless, the description is highly successful, and we shall later see that it is actually a special case of the more complex Laue description of X-ray diffraction.
Figure 1.8 shows the geometrical considerations behind the Bragg description. A collimated beam of monochromatic X-rays hits the crystal. The intensity of diffracted X-rays are measured in the specular direction. The angle of incidence and emission is 90ā āĪ. The condition for constructive interference is that the path length difference between the X-rays reflected from one layer and the next layer is an integer multiple of the wavelength š. In the figure, this means that 2AB = nš, where AB is the distance between points A and B and n is a natural number. On the other hand, we have sin š = ABād such that we arrive at the Bragg condition
nš = 2d sin š. (1.3)
It is obvious that if this condition is fulfilled for one layer and the layer below, it will also be fulfilled for any number of layers with identical spacing. In fact, the X-rays penetrate very deeply into the crystal so that thousands of layers contribute to the reflection. This results in very sharp maxima in the diffracted intensity, similar to the situation for an optical grating with many lines. The Bragg condition can obviously only be fulfilled forš < 2d, putting an upper limit on the wavelength of the X-rays that can be used for crystal structure determination.
CLICK HERE TO DOWNLOAD
CLICK HERE TO DOWNLOAD WITH MEGA
Other LINKS
Please contact me if you have any difficulties with all
subject notes, MCQs books and notes, and different
books. If you cannot download any notes or books in
PdF form then Comment to me and watch this
youtube Channel. If you are confused About studying
then you can ask me.
Follow these social medias
Telegram channel subscribe now
In This website Daily uploaded Notes, Mcqs books,
and notebooks Regularly. Please visit this website
Regularly and follow this websitehttps://taleemkiduniya77.blogspot.com/ if you can gain greater knowledge about us. If any
Download link Or Social Media links are not working
Then you reply to me.
Much appreciated
DISCLAIMER:
These books or notes download free of cost Because
this site has been made for poor students and other
students Who are studying and those who need
these books very much.
https://taleemkiduniya77.blogspot.com/is continually attempting to help the understudies
who can't stand to purchase study materials and books?
Thank you
0 Comments